

Introduction to Computer Concepts

We will learn about:

- What is a Computer?
- What is inside a computer?
- Programming languages
- What does it take to become a programmer?

LEARNING OUTCOME

At the end of this unit, students should be able to:

- Understand the evolution of computing devices from ancient Babylonia to the twenty-first century.
- Understand the components that make up a typical computer system: the central processing unit, internal memory, mass storage, and input and output devices
- Know the levels of programming languages: machine language, assembly language, and high-level language

What is a computer?

- It is an electronic device that **stores** and **process data**.
- It is all around us
- It consists
 - Hardware
 - Example: Motherboard, mouse, keyboard, CPU & etc.
 - Software
 - Example: Window XP, MS Word...

History of Computers - Long, Long Ago Abacus - 3000 BC

- beads on rods to count and calculate
- still widely used in Asia!

Napier's Bones

- John Napier invented logarithms in 1917, which allows multiplication to be performed via addition
- The Napier's Bones were invented to ease the calculation
- Napier's Bones led directly to the invention of slide rule (1632).
- Slide rule also used in Mercury, Gemini and Apollo space program by NASA

Napier's Bones •<u>CC BY-SA 4.0</u>

Slide Rule

History of Computers - 19th Century

Jacquard Loom - 1801

- first stored program metal cards
- first computer manufacturing
- still in use today!

By Edal Anton Lefterov - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11959365

Charles Babbage - 1792-1871

- Difference Engine c.1822
 - huge calculator, never finished
- Analytical Engine 1833
 - could store numbers
 - calculating "mill" used punched metal cards for instructions
 - o powered by steam!
 - accurate to six decimal places

Modern Computer

Vacuum Tubes - 1941 - 1956

- First Generation Electronic Computers used Vacuum Tubes
- Vacuum tubes are glass tubes with circuits inside.
- Vacuum tubes have no air inside of them, which protects the circuitry.

UNIVAC - 1951

- first fully electronic digital computer built in the U.S.
- Created at the University of Pennsylvania
- ENIAC weighed 30 tons
- contained 18,000 vacuum tubes
- Cost a paltry \$487,000

- Was an American Computer Scientist
- Programmed UNIVAC
- Recipient of Computer Science's first "Man of the Year Award"

Grace Hopper

By Unknown (Smithsonian Institution) - Flickr: Grace Hopper and UNIVAC, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=19763543

Second Generation – 1956-1963

- 1956 Computers began to incorporate
 Transistors
- A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power.
- Replaced vacuum tubes with Transistors

By Transisto at English Wikipedia - Own work, CC BY-SA 3.0, https://commons.wiki media.org/w/index.p hp?curid=11885148

Third Generation – 1964-1971

- Third Generation Computers used Integrated Circuits (chips).
- Integrated Circuits are transistors, resistors, and capacitors integrated together into a single "chip"
- Getting smaller, cheaper

By The original uploader was Zephyris at English Wikipedia - Transferred from en.wikipedia to Commons by TenIslands using CommonsHelper., CC BY-SA 3.0, https://commons.wikimedia.org/w/inde x.php?curid=4560427

The First Microprocessor – 1971

Intel 4004 Microprocessor

- The 4004 had 2,250 transistors
- four-bit chunks (four 1's or 0's)
- 108Khz
- Called "Microchip"

The Intel 4004, it was supposed to be the brains of a calculator. Instead, it turned into a general-purpose microprocessor as powerful as ENIAC.

What is a Microchip?

- Very Large Scale Integrated Circuit (VLSIC)
 - Transistors, resistors, and capacitors
- 4004 had 2,250 transistors
- Pentium IV has 42 MILLION transistors
 - Each transistor 0.13 microns (10⁻⁶ meters)

4th Generation – 1971-present

- MICROCHIPS!
- Getting smaller and smaller, but we are still using microchip technology

Birth of Personal Computers - 1975

- 256 byte memory (not Kilobytes or Megabytes)
- 2 MHz Intel 8080 chips
- Just a box with flashing lights
- cost \$395 kit, \$495 assembled.

By Swtpc6800 en:User:Swtpc6800 Michael Holley - Transfered from en.wikipedia, Public Domain,

https://commons.wikimedia.org/w/index.ph p?curid=3185062

IBM PC - 1981

By Rama & Musée Bolo - Own work, CC BY-SA 2.0 fr, https://commons.wikimedia.org/w/inde x.php?curid=36757134

- IBM-Intel-Microsoft joint venture
- First wide-selling personal computer used in business
- 8088 Microchip 29,000 transistors
 - 4.77 Mhz processing speed
- 256 K RAM (Random Access Memory) standard
- One or two floppy disk drives

Apple Computers

Founded 1977

- Apple II released 1977
 - $\,\circ\,$ widely used in schools
- Macintosh (left)
 - released in 1984, Motorola 68000
 Microchip processor
 - first commercial computer with graphical user interface (GUI) and pointing device (mouse)

Generations of Electronic Computers

	First	Second	Third	Fourth Gen.
	Generation	Gen.	Gen.	
Technology	Vacuum	Transistors	Integrated	Microchips
	Tubes		Circuits	(millions of
			(multiple	transistors)
			transistors)	
Size	Filled Whole	Filled half a	Smaller	Tiny - Palm
	Buildings	room		Pilot is as
				powerful as
				old building
				sized
				computer /

1990s: Pentiums and Power Macs

- Early 1990s began penetration of computers into every niche: every desk, most homes, etc.
- Faster, less expensive computers paved way for this
- Windows 95 was first decent GUI for "PCs"
- Macs became more PC compatible easy file transfers
- Prices have plummeted
 - $\circ~$ \$2000 for entry level to \$500
 - $\circ~$ \$6000 for top of line to \$1500

21st Century Computing

- Great increases in speed, storage, and memory
- Increased networking, speed in Internet
- Widespread use of CD-RW
- PDAs
- Cell Phone/PDA
- WIRELESS!!!

What is inside a computer?

► Hardware

- Central Processing Unit (CPU)
 - Intel Duo Core, AMD& etc
- Memory
 - Hard disc, RAM
- Storage Devices
 - Pen Drive, CD, DVD, Diskert
- Input Devices
 - Key Board, Mouse, Scanner...
- Output Devices
 - Monitor, projector, speaker...
- Communication Devices
 - Modem, Wireless card, Switches and Hub, router...

What is inside a computer? (cont')

Software

- Also known as computer programs
- A collection of instruction for computer to operate
- Can be written in many types of languages
- Collections of important program to operate the basic operation of a computer is Operating System
- Example of OS: Microsoft Windows, DOS, OS X (MAC), UNIX and etc

Data Hierarchy

 Data items processed by computers based on data hierarchy

Programming Languages

- A programming language is a machine –readable **artificial language** to express computations that can be performed by a machine.
- In simple term, the language that can instruct computer to perform certain operation!

How Computer Works?

How Computer Interacts?

How Computer Interacts?

How Computer Interacts?

Low Level Language **Operating System** Compiler Compiler

•Computer alone → Dead

•Computer+OS \rightarrow Alive

•Computer+OS+Compiler→ Interact

Types of Programming Languages

- Basically there are 3 types of programming language:
 - Machine languages
 - Assembly languages
 - High-level languages

Machine Languages

- Basically machine cannot understand human language.
- Computer only understand numbers.(Digital format)
- Machines languages are machine-dependents, but it generally consists string of numbers (eventually will reduce to 1s and 0s)
- Example:
 - 1000100111 (Binary system)

Assembly languages

- Machine language is hard to understand and write.
- An English-like abbreviations formed the basic languages.
- A translator program called assemblers will later convert the assembly language to machine language
- Example of assembly languages syntax:
 - LOAD
 - ADD
 - STORE

High-level language

- Assembly language is easier to use and learn compare to machine language, but it is still very tedious to write a complex program which involve a lot of operation.
- High-level languages are developed, where single statements can accomplish substantial tasks.
- It make programming more easier and fun.
- Translator programs called compiler convert highlevel language to machine language
- Example of High-level language
 - ° C, C++, JAVA, FOTRAN, COBOL, PYTHON, PHP....

Summary View

Computer Languages	Sample	Translator Program
Machine Languages	1001111001011111011111 1111010010010110000101 010010	-
Assembly Language	LOAD BASEPAY ADD OVERPAY STORE GROSSPAY	Assembler
High level languages	grossPay = basePay + OverTimePay	Compiler

Newer Programming Languages

- Graphical-based programming language with scripts
- Only simple knowledge on logic is needed in programming
- Example:
 - Visual .NET (C, C++, C#, Basic)
 - JAVA
 - WEB Programming
 - Multimedia programming (FLASH...)

What does it take to become a programmer?

- Need to know Math?
 - Yes & No, you only need to know the simple arithmetic operation. The analytical skill is more important
- The Importance of Design
 - $\circ~$ You need to design a solution for a problem
- Importance of Patience
 - Programming may be frustrating but very rewarding (in term of satisfactory and monetary)
- Importance of precision
 - You need to be able to think logically, precisely and in rigorous way!
- Framing Problems Correctly
 - Become a good problem solver, not a problem creator!

4 ways to learn programming faster

- Look at example code
- After **reading** it, **code** it, and **run** (execute) it, and then **modify** it!!
- Write your own code ASAP!!
- Seek out more sources

Thank You

