
Problem Solving 

& 

Algorithms



OVERVIEW

• What is Problem Solving?

• How to solve a problem?

• Problem Solving Strategies

• Design & representation of algorithms
• (1) Pseudocode and (2) Flow chart



LEARNING OUTCOME

At the end of this unit, students should be able to:
• Define what is problem solving.

• Discuss different problem strategies.

• Apply suitable tools to solve a given problem.



What is Problem Solving?

• Definition:
• Problem solving is the process of transforming the 

description of a problem into the solution of that problem 
by using our knowledge of the problem domain and by 
relying on our ability to select and use appropriate 
problem solving strategies, techniques and tools.



Problem Faced in Everyday in Life

We make decisions everyday
Examples:

 Should I wear casual or formal today?

 Should I watch TV or go out to cinema?

Where is my c programming lab?

Where to put my bag?

Everything needs a DECISION AS A SOLUTION 
TO THE PROBLEM



Steps to solve a problem

• Step 1: Identify the problem

• Step 2: Determine the problem solving strategy to apply

• Step 3: Design the solution

• Step 4: Execute the solution

• Step 5: Evaluate the successfulness of the solution



Problem Solving Strategies

• Many strategies can be use in solving problem.

• Most popular type of strategy is the “Art of War” by Sung Zhi (Ancient 
Chinese Philosopher)

• We will discuss the following strategies:
1. Guess and Check (Try an Error)

2. Start at the end (Work Backward)

3. Divide and Conquer

4. Look for a Pattern



1. Guess and Check (Try an Error)
• Simplest strategy available.

• Just experimenting with the possible solution.

• A bit time consuming if have a lot of possible solution

• But it is very efficient and practical for solving small or medium 
problem

• Example

Ahmad divided 15 stone games into two piles: games he owns and 
games his brother owns. He owns 3 more games than his brother. 
How many games does his brother own?



• Sample Solution
• I'll guess his brother owns 8 games.

• That means Ahmad owns 11 games. That's a total of 19 games.

• My guess is too high.

• I'll guess again. This time I'll guess his brother owns 6 games.

• That means Ahmad owns 9 games. That's a total of 15 games.

• My guess is right.

• His brother owns 6 games.



2. Start at The End (Working Backward)
• A problem may tell you what happened at the end of a series 

of steps and ask you to find what happened at the beginning. 

• To solve the problem, work backward step by step to the 
beginning.

• Also known as bottom-up approach

Remember:

The answer is found by starting with the 
end result and working back to the 

beginning.



• Solution
• First, I'll account for all the pies that were eaten or taken 

home.
• 12 + 2 = 14
• Then I'll add the 4 pies that were left over.
• 14 + 4 = 18
• Therefore, there must have been 18 pies at the start of 

the dinner.

Example:
The waiter brought in 4 pies left over from the dinner. 12 

pies were eaten at the dinner. Ahmad took 2 home with him. 
How many pies did the waiter bring into the feast at the 

beginning?



3. Divide and Conquer
• Most popular strategy used in problem solving.

• Used by Napoleon in his quest to conquer the world.

• Often break up large problems into smaller units that are 
easier to handle. 



4. Look for a pattern

• More advance way to solve a complicated problem

• Some problem can be solved by recognizing pattern within 
the domain.

• For example:

Johan arranged tray of KEK LAPIS on 6 shelves in the shop.
He put 1 trays on the top shelf, 3 trays on the second shelf,
and 5 trays on the third shelf. If he continues this pattern,
how many trays did Johan put on the 6th shelf?



• Solution

Shelf 1 2 3 4 5 6

TRAY 1 3 5 7 9 11



Other Strategies
• Drawings/modeling

• Logical Reasoning

• Extra Information



ALGORITHM



What is an algorithm?

• Designing software usually is designing an Algorithm.

• An Algorithm is a sequence of a finite number of 
steps arranged in a specific logical order, which, when 
executed, produce the solution for a problem.



•An algorithm must satisfy some requirements:

1. Unambiguousness 
– It must not be ambiguous. 
– Computers cannot cope with ambiguous. 
– Therefore, every step in an algorithm must be clear as to what 

it is supposed to do and how many times it is expected to be 
executed.

2. Generality
– It must have generality. 
– A procedure that prints the message “One inch is 2.54 cm” is not an 

algorithm; 
– however, one that converts a supplied number of inches to 

centimeters is an algorithm.

Algorithm Requirements



3. Correctness
–It must be correct and must solve the problem for 

which it is designed. 

4. Finiteness
–It must execute its steps and terminate in finite time. 
–An algorithm that never terminates is unacceptable. 

Algorithm Requirements



What is the connection 
between the real life 
processes and algorithm?

Something to ponder …



Consider the following ….

Problem: Baking a Cake
How to solve:

1.Start
2.Preheat the oven at 180oC
3.Prepare a baking pan
4.Beat butter with sugar
5.Mix them with flour, eggs and essence vanilla
6.Pour the dough into the baking pan
7.Put the pan into the oven
8.End

Algorithm in Real Life



• A specific and step-by-step set of instructions for 
carrying out a procedure or solving a problem, usually 
with the requirement that the procedure terminate at 
some point

• 2 types of algorithm representation will be discussed:

1. Flowchart
2. Pseudocode

Representing Algorithm



Problem: Prepare a Breakfast

1. Start
2. Prepare a Breakfast
3. End



• a semiformal, English-like language (or other language 
that can be understand by human being)

• limited vocabulary that can be used to design and 
describe algorithms.

• Not executed on computers
• A carefully prepared pseudocode program may be 

converted easily to a corresponding C program

What is a Pseudocode?



Pseudocode

• A pseudocode can be used for:
• Designing algorithms

• Communicating algorithms to users

• Implementing algorithms as programs

• Debugging logic errors in program

• Documenting programs for future maintenance and expansion purposes

• A pseudocode must meet these requirements:
• Have a limited vocabulary

• Be easy to learn

• Produce simple, English-like narrative notation

• Be capable of describing all algorithms, regardless of their complexity



26

How to write Pseudocode? 

• An algorithm can be written in pseudocode using six (6) basic computer 
operations:

1. A computer can receive information. 

2. A computer can output (print) information. 

3. A computer can perform arithmetic operation

4. A computer can assign a value to a piece of data:

5. A computer can compare two (2) pieces of information and select one of two 
alternative actions.

6. A computer can repeat a group of actions.



27

How to write Pseudocode? 

1. A computer can receive information. 

Typical pseudocode instructions to receive information are:

Read name

Get name

Read number1, number2



28

How to write Pseudocode? 

2. A computer can output (print) information. 
Typical pseudocode instructions are:

Print name

Write "The average is", ave



29

How to write Pseudocode? 

3. A computer can perform arithmetic operation
Typical pseudocode instructions:

Add number to total

Total = Total + Number

Ave = sum/total



30

How to write Pseudocode? 

4. A computer can assign a value to a piece of 
data:

To assign/give data an initial value:

To assign a computed value:

Initialize total to zero

Set count to 0

Total = Price + Tax 



31

How to write Pseudocode? 

5. A computer can compare two (2) pieces of information 
and select one of two alternative actions.

Typical pseudocode e.g. 

If number < 0 then 

add 1 to neg_number

else

add one to positive number

end-if



32

How to write Pseudocode? 

6. A computer can repeat a group of actions.
Typical pseudocode e.g.

Repeat until total = 50

read number

write number

add 1 to total

end-repeat
OR

while total < = 50 do:

read number

write number

end-while



Example: Sum of 2 numbers

Start

Read status
if

status is equal to 1

print “on”

Else

If 

status is equal to 0

print “ Off”

else

print “Error in status code”

end_if

End



1. Start
2. Prepare a Breakfast
2.1. Prepare a tuna sandwich
2.1.1 Take 2 slices of bread
2.1.2 Prepare tuna paste 
2.2. Prepare some chips
2.2.1 Cut potatoes into slices
2.2.2 Fry the potatoes
2.3. Make a cup of coffee
2.3.1 Boil water
2.3.2 Add water with sugar and coffee
3. End



What is a Flow Chart?

• Flowchart is another technique used in designing and 
representing algorithms. 

• It is an alternative to pseudocode; whereas a 
pseudocode description is verbal while a flowchart is 
graphical in nature.

 Defintion: a graph consisting of geometrical shapes 
that are connected by flow lines



Sub-module / Function
(Barred Rectangle)

Flow DirectionInput/Output

ConnectorProcess

DecisionStart/Stop

RepresentationSymbol RepresentationSymbol



This symbol shows where a program start 
and stop (program or module).

• To identify the beginning and end of a whole program.

• The beginning terminal is labeled with start and the 
ending terminal is labeled with end or stop. 

• When the flowchart is for a module, the beginning 
terminal is labeled with the module name and the 

ending terminal is labeled with return or exit.



Used to show tasks such as calculations, assignment 
statements, incrementing, etc.

Processes are labeled with the statement the task to be performed, for 
example:

totalSales = subTotal + pstAmount + gstAmount
Area = Length * Width 
firstName = "Sally"

Area = Length * Width



Used to show an operation that brings data into a 
program, or an operation that sends data out of 
the program. 

• For example, getting values from the user or printing 
something on the screen.

• Input/output symbols are labeled with the statement 
that receives the input or generates the output, which 
could also include opening files and devices. 

Examples
get stdNumber get stdNumber



• Decisions are labeled with the condition that they are testing, for 
example:

numRecords > 10
foundMatch = true

numRecords > 10

Used to identify a point in the program where a 
condition is evaluated. Conditions are used in if 
statements and looping.



Sequence structure statement_1 statement_2 statement_n

…

Selection structure
condition

then-part

else-part

condition

then-part

Yes

Yes

No

No

------------------------------------------------------------------------------------------------------------



Repetition structure

condition

loop-body
Yes

No



Used to connect two segments of 
flowchart that appear on the same page. 

This is done when your flowchart runs to the 
bottom of the page and we are out of room: 
end it with an on-page connector and then 
place another on-page connector in a free spot 
on the page, and continue the flowchart from 
that connector.



A

A
• On-page connectors are labeled with 

upper-case letters. 

• The connector at the end of a segment of 
flowchart will match the connector that 
identifies the rest of the flowchart. 

• For example, when we run out of room, 
end the flowchart with a connector 
labeled "A". 

• The flowchart continues at the matching 
connector also labeled "A". 



Used to specify a function/module call or a group of related 
statements. 

Example Start

Submodule

End

Submodule

Return



• Communication
• Flowcharts are better way of communicating the logic of a system to all concerned.

• Effective analysis
• With the help of flowchart, problem can be analyzed in more effective way.

• Proper documentation
• Program flowcharts serve as a good program documentation, which is needed for 

various purposes.

• Efficient Coding

• The flowcharts act as a guide or blueprint during the systems analysis and program 
development phase.

• Proper Debugging
• The flowchart helps in debugging process.

• Efficient Program Maintenance
• The maintenance of operating program becomes easy with the help of flowchart. It 

helps the programmer to put efforts more efficiently on that part

The benefits of flowcharts 



What are the problem 
solving process?

Something to ponder …



Problem Solving Process

Input Process Output

Explanation about the terms



Example 1

Sum of 2 integer numbers

2 integer 
numbers, x and 
y

SumSum = x + y

Input Process Output



Flowchart: Calculate Price

of Apples

Input
Quantity

Start

Price = Quantity * Price_per_kg

Input
Price_per_kg

Output
Price

End



Thank You


