
Fundamentals of
C Programming (Part 2)

By Noor Hazlini binti Borhan

Overview

Fundamental components in a program code:

identifiers

data types

format specifiers

constants

standard input functions (scanf)

Simple C programming example.

Learning Outcomes

On completion of this unit, you should be able to:

Define the components in a program code.

Declare the variables.

Write a simple C program.

Apply the format specifiers and scanf().

In general, a C Program consists of the following components:

Simple C Program-Version 2

/*Program Name:Student Details Program

Author Name:Noor Hazlini

Descriptions:This is a simple C program. In this program, some basic components of C such as

constants,variables,scanf(),format specifiers and data types will be applied.*/

#include <stdio.h> //pre-processor directives

#define YEAR 2016 // constant declarations

int main() //int main()

{ //open curly brace

int student_id,year_born,student_age; //variable declarations

printf("Welcome to C programming Course!!\n"); //printf() statement

printf("The purpose of this program is to save the student details\n");

printf("Enter your student ID:\n");

scanf("%d",&student_id); //scanf() with format specifiers

printf("Enter your year of born:");

scanf("%d",&year_born);

student_age = YEAR - year_born;

printf("Your student ID is %d and your age is %d",student_id,student_age); //printf() with %d format specifiers

return 0;

} //close curly brace

Identifiers

Also known as “variables”

Words to represent & reference certain program
entities

Identifiers give unique names to various objects in a
program.

Refer to location in memory where value can be stored

Case sensitive: differentiates between lowercase &
uppercase letter

Declarations

• A declaration is a syntactical element that associates a type with
a program entity, such as a variable.

• Variables must be declared before they can be used.

id;
age;

id,age;ORint
int

int

Data type: integer

Variables: id & age

Initializing Variables

• We can assign an initial value to a variable when we declare it.
For example:

int no=10;

• Sets the int variable to ten as soon as it is created. This is just the
same as:

int no;

no=10;

Assignment operator

Rules for constructing Identifiers:

A to Z , a to z , 0 to 9 , and the underscore “_”

The first character must be a letter or an underscore

Only the first 32 characters as significant

There can be no embedded blanks

Reserved words cannot be used as identifiers

Identifiers are case sensitive

Example: Identifiers

Valid identifiers Invalid identifiers

• student_ID,
• Item_12,
• count,
• perimeter_of_circle
• _age

• student gender //embedded blank
• 28thMarch //the first character is a digit
• Width*Length //special character*
• $money //special character $
• break //reserved word

Tips to choose the name for identifier:

• Avoid excessively short and cryptic names such as x or yz.

• Instead, to add to the readability of your program, use
reasonably descriptive names, such as student_id and
student_age.

• Use underscore or capital letters to separate words in identifiers
that consist of two or more words, such as student_program or
StudentProgram are much easier to read than studentprogram .

Data types

• A data type is a set of data values and a set of operations on those
values.

• A data type is used to identify the type of a variable when the
variable is declared.

• Its also can be used to identify the type of the return value of a
function.

2 types of data type:

• 1. Fundamental data types:

• Example: int, char, double, float, void

• Some of these data types have short, long, signed,
and unsigned variants.

• 2. Derived data

• Examples: arrays, strings and structures.

Built-in data types

• (covered in Structures)Programmer-defined
data types

Example: Data types

Data type Description Size (no of
bytes)

Range

int numeric program
variables of integer
type.

2 -32768 to +32767

char character variables. 1 0 - 255

double floating-point
numbers

8 Approximately 15
digits of Precision

float floating-point
numbers

4 -2,147,483,648 to
+2,147,483,647

unsigned
short

short unsigned
integer

3 0-65535

Data type Description Size (no of
bytes)

Range

signed long Long signed
integer

4 -2,147,483,648 to
+2,147,483,647

unsigned char Unsigned
character

1 0 to 255

signed char Character 1 -128 to 127

signed
short/short

Short signed
integer

2 -32768 to +32767

void No data type 0

• Unsigned means the number is always zero or positive, never
negative.

• Signed means the number may be negative or positive (or zero).
• If you don’t specify signed or unsigned, the data type is presumed

to be signed.
• Thus, signed short and short are the same.

• An integer type is a number without a fractional part.

• It is also known as an integral number.

• C supports three different sizes of the integer data type: short
int, int and long int.

• sizeof(short int)<= sizeof(int)<= sizeof(long int)

short int

int

long int

• A floating-point type is a number with a fractional part, such as
43.32.

• The C language supports three different sizes of floating-point:
float, double and long double.

• sizeof(float)<= sizeof(double)<= sizeof(long double)

float

double

long double

Constants

• Constants refer to fixed values that may not be altered by the program.

• All the data types we have previously covered can be defined
as constant data types if we wish to do so.

• The constant data types must be defined before the main function.

• The use of constants is mainly for making your programs easier to be
understood and modified by others and yourself in the future.

• We can define constants in a C program in the following
ways:

• By “const” keyword

• By “#define” preprocessor directive

• The format is as follows:

#define CONSTANTNAME value

• The constant name is normally written in capitals and
does not have a semi-colon at the end.

Types of C Constant

• Integer constants

• Real or Floating point constants

• Octal & Hexadecimal constants

• Character constants

• String constants

Constant type data type Example

Integer constants
int unsigned
int long int

53, 762, -478 etc
5000u, 1000U etc

Real or Floating point
constants

float double 10.456789

Octal constant int
013
/* starts with o */

Hexadecimal constant int
0x90
/* starts with 0x */

character constants char ‘A’ , ‘B’, ‘C’

string constants char “ABCD” , “Hi”

Example: Constants

Constant Writing Format

#define CONSTANTNAME value

Examples: #define YEAR 2016

#define MAX 100

#define PI 3.142

“const” keyword

Examples:

const int height = 100; /*int constant*/

const float number = 3.14; /*Real constant*/

const char letter = ‘A’; /*char constant*/

const char letter_sequence[10] = “ABC”; /*string constant*/

/*Program Name:Student Details Program

Descriptions:This is a simple C program. In this program, some basic components of C such as

constants,variables,scanf(),format specifiers and data types will be applied.*/

#include <stdio.h> //pre-processor directives

#define YEAR 2016 //define constant declarations

int main() //int main()

{ //open curly brace

int student_id,year_born,student_age; //variable declarations

const char letter = 'A'; //char constant

printf("Welcome to C programming Course!!\n"); //printf() statement

printf("The purpose of this program is to save the student details\n");

printf("Enter your student ID:\n");

scanf("%d",&student_id); //scanf() with format specifiers

printf("Enter your year of born:");

scanf("%d",&year_born);

student_age = YEAR - year_born;

printf("Your student ID is %d and your age is %d\n",student_id,student_age);

printf("value of letter : %c \n", letter);

return 0;

} //close curly brace

Define constant

Keyword const

Standard Input Function
scanf()

• The declaration of the standard library function scanf() is
contained in the header file stdio.h.

• Therefore , the preprocessor directive #include <stdio.h> must
appear earlier in the program.

• scanf() reads data entered via the keyboard.

• Many common format specifiers, which indicate the type of
data expected from the keyboard.

• Data argument identifiers must be preceded with an ampersand
(&).

• The (&) ahead of the variable signifies the address in memory
where the data will be stored (its a pointer to the variable).

scanf(“%d%f”, &id,&mark);

.. 125 88..

w x

“%d%f” &id, &mark

125
(id)

88
(mark)

scanf(format string, input list);

Input stream

Format specifiers

ampersand

Format Specifiers

• In C programming we need lots of format specifier to work with
various data types.

• Format specifiers define the type of data, whether to print
formatted output (printf) or to take formatted input (scanf).

Example: Format Specifiers

Format specifier Description Supported data types

%c Character
char
unsigned char

%d Signed Integer

short
unsigned short
int
long

%e or %E
Scientific notation of float
values

float
double

%f Floating point float

%i Signed Integer

short
unsigned short
int
long

%l or %ld or %li Signed Integer long

%o
Octal representation of
Integer.

short
unsigned short
int
unsigned int
long

Format specifier Description Supported data types

%p
Address of pointer to
void void *

void *

%s String char *

%u Unsigned Integer
unsigned int
unsigned long

%x or %X
Hexadecimal representation
of Unsigned Integer

short
unsigned short
int
unsigned int
long

%lf Floating point
Double

%n
Prints nothing

%%
Prints % character

/*Program Name:Student Details Program

Descriptions:This is a simple C program. In this program, some basic components of C such as

constants,variables,scanf(),format specifiers and data types will be applied.*/

#include <stdio.h> //pre-processor directives

#define YEAR 2016 //constant declarations

int main() //int main()

{ //open curly brace

int student_id,year_born,student_age; //variable declarations

printf("Welcome to C programming Course!!\n"); //printf() statement

printf("The purpose of this program is to save the student details\n");

printf("Enter your student ID:\n");

scanf("%d",&student_id); //scanf() with %d format specifiers

printf("Enter your year of born:");

scanf("%d",&year_born);

student_age = YEAR - year_born;

printf("Your student ID is %d and your age is %d",student_id,student_age);//printf() with %d format

specifiers

return 0;

} //close curly brace

Example: format specifiers for printf() & scanf() -%d

