

# Unit 2 Computer System Components

Assoc. Prof. Dr. Tan Chong Eng







## Unit Outline

- CPU Structure and Function
- Memory Technology
  - Internal Memory
  - External Memory
- Input and Output: Computer Buses







## **Computer System Overview**



Images are from Google Search and for illustration purpose only. Copyrights are with each respective registered parties.





## Mainboard of the System Unit



Images are from Google Search and for illustration purpose only. Copyrights are with each respective registered parties.





#### **Computer Component Interconnection**





Images are from Google Search and for illustration purpose only. Copyrights are with each respective registered parties.









## CPU (Central Processing Unit)



Images are from Google Search and for illustration purpose only. Copyrights are with each respective registered parties.



#### The Microprocessor

## **CPU** Organization





#### General-purpose (von Neumann) Architectures



• In the von-Neumann architecture, a small set of circuits can be driven to perform very different tasks, depending on the software program which is executed.







#### **Computer Memory**

- Memory System
  - Characteristics
  - Hierarchy







## Types of Computer Memory and Its Usage



- When you think about it, it's amazing how many different types of electronic memory you encounter in daily life. Many of them have become an integral part of our vocabulary:
  - RAM
  - ROM
  - Cache
  - Dynamic RAM
  - Static RAM
  - Flash memory
  - Memory Sticks
  - Virtual memory
  - Video memory
  - BIOS



#### <u>Usage:</u>

- Cell phones
- PDAs
- Game consoles
- Car radios
- GPS
- TVs
- iPad





## Memory Physical Types



- Semiconductor
  - RAM
- Magnetic
  - Disk & Tape
- Optical
  - CD & DVD





## **Physical Characteristics**



- Decay: information lost when electrical power is switched off
- Volatility
- Erasable
- Power consumption

#### Characteristic:

- 1. volatile/non-volatile
- 2. erasable/non-erasable
- volatile: does the memory decay when the power is turned off?
- erasable: can you erase the memory?





## Example of non-volatile memory:

MALAYSIG SARAWAR

- ROM read-only memory
  - manufacture the information into the chip
  - better not make a mistake
- PROM programmable ROM
  - can be written once
- EPROM erasable ROM
  - shine a UV light on it and it disperses the charge
  - can program it electronically using a high voltage
- EEPROM electrically erasable ROM
  - Can erase a byte or a block using a high voltage
  - Can program electronically
- Flash memory
  - Program electronically, and erase a block of memory in 1-2 seconds using a high voltage



















### Memory Hierarchy - Diagram











#### **External Memory**

- 1. Magnetic Disk
  - Hard Disk
  - Floppy Disk
- 2. Optical
  - CD-ROM, CD-Recordable (CD-R), CD-R/W
  - DVD, DVD-R, DVD+R, DVD-RW
  - Blu-ray
- 3. Magnetic Tape (Almost Obsolete)
- 4. Flash Memory Drive / Solid State Drive







#### Capacity and Performance

- There are two ways to measure the performance of a hard disk:
  - **Data rate** The data rate is the number of bytes per second that the drive can deliver to the CPU. Rates between 5 and 40 megabytes per second are common.
  - Seek time The seek time is the amount of time between when the CPU requests a file and when the first byte of the file is sent to the CPU. Times between 10 and 20 milliseconds are common.
- The other important parameter is the **capacity** of the drive, which is the number of bytes it can hold.
- A typical computer system will have a hard disk with a capacity between few hundreds to few thousands of gigabytes.





## Inside Hard Disk: Another example (SCSI)



**Cover Mounting Holes** (Cover not shown) **Base Casting** Spindle SCSI : Small Computer System Interface Slider (and Head) Actuator Arm Actuator Axis Case Mounting Actuator Holes Platters **Ribbon Cable** (attaches heads SCSI Interface to Logic Board) Connector **Jumper Pins** Tape Seal Power Jumper Connector INIVERSITI MALAYSIA SARAWAH



## Disk Data Layout, Data organization and format









#### **USB** Flash Drive

- Capacity:
  - 8-256GB (common)
  - 512GB and 1TB (new)
- USB 2.0 (60MB/s)
- USB 3.0 (625MB/s)
- USB 3.1 (type-C, 530MB/s)







## Solid State Drive

- It uses IC assembly as memory to store data
  - Usually NAND-based flash memory is used
- No moving mechanical components, more resistant to physical shock
- Higher performance with lower access time and latency
- More expensive but improve the slow read/write performance of traditional hard disk drive









## Understanding the Optical Disk



- An optical disk is a fairly simple piece of plastic, about 1.2 mm thick. Most of the optical disks consist of an **injection-molded piece of clear polycarbonate plastic**.
- During manufacturing, this plastic is impressed with microscopic bumps arranged as a single, continuous, extremely long spiral track of data.
- Once the clear piece of polycarbonate is formed, a thin, reflective aluminum layer is sputtered onto the disc, covering the bumps.
- Then a thin acrylic layer is sprayed over the aluminum to protect it. The label is then printed onto the acrylic. A cross section of a complete CD looks like this:









Blu-ray

I = 150 nm

w =

#### Various Optical Storage and Multi-layer

DVD

I = 400 nm

w =



©2000 How Stuff Works

DVD formats

w = 600 nm 🗎 320 nm 130 nm 200 nn D =D = 540 nm 320 nm 100 nn ∞= 1.6 μm Ø = ø = = 480 nm 1.1 um 620 nm  $\lambda = 780 \text{ nm}$  $\lambda = 650 \text{ nm}$  $\lambda = 405 \text{ nm}$  $\lambda = 405 \text{ nm}$ 0.1 mm 0.6 mm 0.6 mm 1.1 mm 1.1 mm 0.6 mm 0.6 mm 0.1 mm

HD DVD

I = 200 nm

w =

### Input / Output













#### **Bus Interconnection Scheme**









#### **Computer Buses**





©2001 HowStuffWorks





- CPU structure and organization
- Internal memory characteristics and its types
- External memory types and how data being organized and stored
- Bus interconnection for computer Input and Output



